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Abstract-A very effective and accurate solution method is proposed for studying the free and the wall 
buoyant jets. The buoyant jets are treated as a combined system of the momentum jets and buoyant plumes, 
and are analyzed by introducing some dimensionless variables of proper scales over the entire range of 
buoyancy. An effective and rigorous finite difference scheme is developed to solve the nonsimilar equations 
subject to the integral constraints of momentum and heat flow conservations. Very accurate correlation 
equations are proposed for predicting the centerline temperature and the centerline velocity of the two- 
dimensional laminar free buoyant jets. Correlations of the surface temperature and the surface shear stress 

of the wall buoyant jets are also presented. 

1. INTRODUCTION 

HOT FLUID discharged from a narrow slot into a 
large quiescent fluid reservoir of lower tem~rature is 
termed a plane {or two-dimensional) buoyant jet. 
Both the unconfined free jet arld the wall jet pro- 
pagating tangentially along a flat surface have been 
studied [l-16]. The flow and thermal characteristics 
of buoyant jets are of great interest in many industrial 
systems and some environmental studies, such as 
mixing, ocean circulations, and air or water pollution, 
etc. In practice, the jet flow is turbulent and most of 
the previous investigations deal with turbulent buoy- 
ant jets. However, laminar jets have also been studied 
extensively [l-l 61, since turbulent jets can be analyzed 
mathematically in an identical way [ t7f except that an 
empirical constant has to be dete~ined exper- 
imentally. 

It is known 17, 81 that the buoyant jet behaves like 
a pure momentum jet at the region near the nozzle, at 
which the buoyancy force is negligible when compared 
with the inertia force. In the downstream region far 
from the nozzle, where the buoyancy force is domi- 
nant, the buoyant jet is equivalent to a buoyant plume 
arising from a line heat source. The limiting cases of 
pure momentum jets and pure buoyant plumes have 
been investigated by many researchers [l-5, 18-201. 

For the past two decades, the research on Iaminar 
jets has concentrated on the effects of buoyancy [7- 
151. However, most of the previous analyses do not 
cover the entire range of buoyancy intensity. Starting 
from one of the quite different scaling laws of the two 
limiting cases, the previous solutions are valid only 
for the region near or far from the slit. Accurate 
solutions and correlations are not available for the 
intermediate region where the inertia is comparable 
with buoyancy. 

In this paper, we introduce new buoyancy par- 

t To whom correspondence should be addressed. 

ameters and transformation variables that are of 
proper scaling laws for the jet, plume, and tran- 
sition regions. The obtained universal formulations of 
buoyant jets can be readily reduced to the self-similar 
equations of pure momentum jets and to those of 
pure buoyant plumes. We have also developed a very 
effective finite difference scheme to solve the set of 
nonsimilar equations subjected to the boundary con- 
ditions and the additional two integral constraints of 
momentum and heat flux conservations. The numeri- 
cal method is very useful for studying other com- 
plicated systems of jets and plumes. 

The proper dimensionless variables, the universal 
formulations, and the effective numerical scheme 
resulted in very accurate solutions for the buoyant jets 
over the entire region of buoyancy. In addition, simple 
but very accurate correlation equations of the center- 
line temperature and the centerline velocity of the free 
buoyant jet, as well as the surface temperature and 
the surface friction of the wall buoyant jet, can be 
derived in terms of the values of the pure momentum 
jet and the pure buoyant plume. 

2. ANALYSIS 

2.1. System descriptions and governing equations 
We consider laminar, plane buoyant jets of incom- 

pressible fluid emerging vertically from a long, narrow 
slit of width up and spreading into a quiescent fluid 
reservoir of a constant temperature T, . For the free 
jet the flow is unconfined after discharging from the 
slit, while for the wall jet the flow develops tangentially 
along an adiabatic vertical flat plate. According to the 
Boussinesq and boundary-layer approximations, the 
governing equations of the plane buoyant jets are 
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1 

NOMENCLATURE 

A, B, C defined in equation (46) Greek symbols 

‘;, specific heat 

C, friction coefficient, z,/p(v/.~)~ ; 
thermal diffusivity 
thermal expansion coefficient 

f dimensionless stream function i buoyancy parameter, equation (17) 
F j: .f”.f’ drl ‘7 dimensionless transverse coordinate, 

9 gravitational acceleration t vi+ 
zr J,Vdq 0 dimensionless temperature, 

focal Grdshof number, gb] T*],?/v (T- T,)i/T* 

Gr, Grashof number based on the width of i unified scale parameter, equation (13) 
the slit, g~(T*]w’/v* kinematic viscosity 

H s; f”odq k dimensionless longitudinal coordinate, 

J,, initial momentum of the jet per unit (I-tW 
length of source P density of fluid 

Pr Prandtl number, v/r r shear stress 

Q0 heat flow per unit length of source cp dimensionless temperature, 
RI! local Reynolds number, u,x/v [(T- T,)/T*](Rez/Gr,)“4 for the free 
Re, Reynolds number based on the width of jet, and [(T- T,)/T*](R$/Gr,) ‘c’ for 

the slit, U~W/I’ the wall jet 
T temperature * stream function. 
T* characteristic temperature, Qo/pc,,v 
u, 1’ longitudinal and transverse components Subscripts 

of velocity C at the centerline of the free jet 

a0 mean initial velocity of the jet i ith iteration 
C’ dimensionless longitudinal velocity, j at transverse position level j 

(u/uo)(Re~/Gr,)“4 for the free jet, and on the surface of the flat plate 

(uju,)(Re~,/Gr,)*” for the wall jet s, initial value of the jet 

W width of the slit Y, of the ambient fluid. 

x, J longitudinal and transverse coordinates, 

respectively Superscripts 

X. Y dimensionless longitudinal and partial derivative with respect to ‘1 

transverse coordinates. n at longitudinal position level n. 

across the flow field : 
(3) (2) 

dfr i-7 
The axial distance x is measured from a virtual line =J dx -1 

&dy = 
I 

gp( T- T,,) dy for a free jet 
.m< 

source of heat and momentum [ 10, 131. The plus sign (7a) 
in front of the last term of equation (2) represents 

the buoyancy assisting flow, i.e. the case of hot fluid and 

ejected upward or cold fluid downward. The minus 
sign denotes the case of buoyancy opposing flow. The 

associated boundary conditions are &[i’ u(b’ .‘djl)di.] 

at y=O: L’ = 0, 5TjLl.v = 0 (4) 1 Ir 

?Iu/F_~~ = 0 for a free jet (5a) = 0 ’ s Ls 
g/I(r- T,) dy dy for a wall jet. (7b) 

I, I 

u = 0 forawalljet (5b) At the region very close to the slit nozzle (X + 0), the 

as _I’-+cc: I,4 = 0, T= T,. (6) 
buoyancy force is negligible and the jets are non- 
buoyant. Therefore, the initial conditions of equations 

2.2. The integrul constraints (7a) and (7b) can be obtained, respectively, as 

In addition to the above boundary conditions, two 

s 

r 

integral constraints should be considered to obtain J, = pz pu’ dy = constant for a free jet @a) 

nontrivial solutions. The first constraint is derived 
-X 

through the integration of the momentum equation and 



for a wall jet. (8b) 

Another constraint comes from energy conser- 
vation. The energy carried by the boundary-layer 
flow, across the half plane at any x > 0, is constant 
and equal to the energy released from the slit. Hence 
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which also plays the role of a buoyancy parameter or 

mixed convection parameter. At the region near the 

slit nozzle (X + 0), the buoyancy can be neglected and 
the system is nearly a pure momentum jet. In this case 

Re >> Gr, therefore [ + cc and < = 0. But at the 
downstream distance far from the nozzle, the buoy- 

ancy is dominant and the system behaves like a buoy- 
ant plume arising from a line thermal source. In this 

case,[-+Oand<= 1. 
In addition to the dimensionless coordinates, a 

dimensionless stream function and a dimensionless 
temperature are respectively introduced as 

f(L 9) = i/VA (19) 

and 

PCp s z Q,/2 for a free jet (9a) 
u(T-T,)dy = 

0 QO for a wall jet (9b) 

where Q. is the rate of heat flow discharged from the 
slit per unit length. By introducing the mean initial 

velocity of the jets as 

or 

u0 = (J,/~w)‘~~ forafreejet (lOa) 

u0 = (2K,/p2w2) ‘j3 for a walljet (lob) 

the quantity Q0 can be expressed in terms of the initial 

values u0 and r,, of the jet : 

Qo = pc,+ow(T, - T,). (11) 

2.3. Transformation variables 
To facilitate the numerical computations, a non- 

similar transformation based on some novel trans- 
formation variables is accomplished. The proposed 
dimensionless transverse coordinate is 

&Lv) = [(T- T,)/T*l~. (20) 

2.4. Transformed equations of a plane free buoyant jet 
By using the dimensionless variables and coor- 

dinates defined in the above section, the system equa- 
tions of a plane free buoyant jet can be transformed 

into the following forms : 

n = (y/x)2. (12) 

with the unified scale parameter 1. defined by 

i = (Re,Re)“‘+Gr”5 forafreejet (13a) 

(22) 

The associated boundary conditions and integral con- 
straints are 

or 

1 = (ReiRe)“4+Gr’!5 forawalljet (13b) 

where 

Re = u,xjv and Re, = u,wjv (14) 

are the local Reynolds number and the Reynolds num- 
ber based on the width of the slit, respectively. The 
local Grashof number is defined as 

Gr = .qbI T*lx3jv’ (15) 

where 

.f(LO) = 0, f”(5,o) = 0, @(LO) = 0 (23a-c) 

f’(5, co) = 0, @(5, a) = 0 (24) 

(l-i)$[~il.d~]+3~,f’f’drl 

15 Zc 

=S4 0 s 
@dq (25) 

T* = QO/(pc,,v) = (TO - T,)Re, (16) 

is the characteristic temperature of the jet. 
A parameter that describes the relative strength of 

inertia and buoyant forces is introduced here as 

< = (Re, Re)“3/Gr”s forafreejet (17a) 

or 

< = (Rez Re) ““/Gr”’ for a wall jet. (17b) 

In terms of [, a dimensionless longitudinal coordinate 
can be defined as 

(26) 

(27) 

For the limiting cases of 5 = 0 and 5 = 1, equations 
(21)-(27) are readily reducible to the set of self-similar 
equations of a momentum free jet and a pure buoyant 
line plume, respectively. 

5 = (1 +i)-’ 

2.5. Transformed equations of a wall buoyant jet 
For the system of a wall buoyant jet, the presence 

of an adiabatic vertical wall causes slight changes in 
the transformed governing equations as well as the 

(18) boundary conditions and constraints when compared 



with the case of the free buoyant jet. In this case, 3. I. The discretization uf’the integral construints 
equations (l)-(6) and (7b)-(9b) are transformed into For convenience, the two integral constraints (25) 

and (27) of the free buoyant jet are rewritten as 

(29) 

.f’fC. 0) = 0, .f’fS, Of = 0. O’((, 0) = 0 (30) i and H = .f“O dv. (39) 
.f’(5. rx) = 0. f)(<, C0) = 0 (31) 

s 0 

(l-<)$[~; .Y(s,& .Wdq!d,l] 

The initial condition of equation (37) is 

IimF = L/2. ;-+” (40) 

+&+6x f“ (J j.i;dl)dq = :“I’ ,f’ (~,,,),, The net points are defiiled by 
vO=O, g,=r,_,+h ,j= I,2 ,..., J (41) 

(32) 
[“=O. 5”={” ‘+k n=l,2 ._.., N (42) 

&$I; Y(~‘,.#-‘ld’i)dv] = j/2 (33) where the increments I? and k can be uniform or 
nonuniform. Equations (37) and (38) can be dis- 

s ir .f”@dv = 1. 

cretized into the following finite-difference form by 

(34) using central difference : 
0 

AF”+BG”+C’= 0 (43) 
By utilizing the boundary conditions, equations (32) 
and (33) can be further reduced into the foliowing 

H” = 11’2 (44) 

where 
forms : 

d 
(1-0, 

A = I, B = 0, C= -l/2 farn = 0 (45) 

and 

f) =: - 15(<” ’ ‘)4,/g (46b) 

C= (3-A)F’- l-i-BG” ’ (46c) 

(36) 
for n > 0. fn deriving the finite-difference equations 
(43) and (44), the following difference approximation 

was used for the derivative : 
Equations (28)-(31) and (34)-(36) are the universal 
formulation of a laminar wall buoyant jet. They can 

dl/d< = fYjl _ =‘I- ‘)jk (47 1 

be readily reduced to the set of self-s~rn~iar equations and the middle point values were estimated by 
of a nonbuoyant wall jet (t = 0) and a buoyant wall 

plume (< = 1). 
_,*- I;2 = (-_“+Z” ‘)/2 (48) 

3. NUMERICAL METHOD 

To obtain converged nontrivial solutions of the 
nonsimilar equations (21) and (22) subject to the 
boundary conditions (23) and (24) of zero values, 
additional conservation constraints should be sat- 
isfied simultaneously. Owing to the integral con- 
straints, any standard finite-difference scheme can- 
not be applied directly. Therefore, we developed a 
numerical algorithm to deal with the integral con- 
straints, which is then incorporated with Keller’s 
box scheme [21]. To conserve space, we describe only 
the treatments of the integral constraints and bound- 
ary conditions. 

where z is any function of 5. 

3.2. Recurrmw eyuutions 

Trivial solutions or solutions not satisfying the 
integral constraints would be obtained if we sotved 
the discrete governing equations associated only with 
the boundary conditions. To incorporate the addi- 
tional two integral constraints with the conventional 
numerical scheme, our strategy is to drop the bound- 
ary conditions ,f”(&O) = 0 and O’(<,O) = 0 and 
replace them with another two presupposed boundary 
conditions 

,f”(<, 0) = S and U(<, 0) = t (49a.b) 

where s and t are the guessed nonzero constants. 
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The equations (23a), (24) and (49a,b) will be used 
as boundary conditions to complete the system of 

difference equations. The two dropped boundary con- 
ditions f”(t, 0) = 0 and t?‘(l, 0) = 0, together with the 
two integral equations (43) and (44), are then treated 
as constraints. Once the converged solution of the 
difference equations is obtained, the refined values of 
s and t for the next trial can be estimated by the 

recurrence equations 

DID, -D,Dh 
St+ I 

= s1 + D,D,-D,D, (504 

t L&D,-DID, 
r+ I = t’f D,D,-Dz& 

(50b) 

where the subscript i denotes the ith iteration for 

adjusting the guessed boundary conditions, and 

D,= ia:, 
4 

D, = c ambm D,= i b; 
In- I m= I ,n= I 

D, = i a,c,, D, = 2 b,c, 
n,= I ml= I 

where 

a, = W(<“, O),/ds, a2 = af “(y, o),jas 

a3 = aHyji%, 4 - as 
a _AC IRs 

ds 

b, = a0fc oh/at, b2 = af”(y, o),jat 

b3 = affyjat, b, = AZ +B<$ 

cl = @(5”,0),, c2 =f”(5”,0), 

cj = H:-l/2, cq = AF;+BG;+C. 

(51) 

(52) 

The above recurrence formulae are derived via the 
minimization of the sum of squares of the dis- 
crepancies for the constrained conditions. The deriva- 
tives involved in the recurrence formulae can be com- 
puted by solving two sets of linear systems called 
variational equations which were derived by taking 
the derivatives of the difference equations and bound- 
ary conditions with respect to s and t. These equations 
retain the tridiagonal block structure of the matrix, 
and hence can be solved efficiently by using Keller’s 

scheme. 
The iterations for adjusting the presupposed 

boundary conditions are repeated until the following 
criterion is achieved : 

[f “(F, O),]’ + [@(tn. Oh] * + [H: - l/21 2 

+[AF:+BG:+C]’ GE (53) 

where E is a very small quantity, say, 10mR or less. 
Whenever this criterion is satisfied, the unique solu- 
tion which satisfies both the boundary conditions and 
integral constraints is surely obtained at 5”. Then, 
the computation procedures were shifted to the next 
marching step c”’ ‘. 

For solving the system equation of a buoyant wall 

jet, similar procedures have been followed. However, 
the dropped boundary conditions for a wall jet should 
be f ‘(t,O) = 0 and f3’(5,0) = 0, which were replaced 

by the presupposed boundary conditions f”(<, 0) = s 
and 0((, 0) = t, respectively. 

A uniform mesh size of At = 0.01 and Aq = 0.05 
has been used, which gave convergent numerical 
results that do not change with further grid refine- 
ment. The edge of the boundary layer has been deter- 

mined to be yl, = 18 for a free jet and 25 for a wall 

jet. 

4. RESULTS AND DISCUSSION 

4.1. Free buoyant jet 

Numerical results of f ‘(5, 0) and 0(& 0) for a free 
buoyant jet over the entire buoyancy region from a 
pure momentum jet (5 = 0) to a pure buoyant plume 
(5 = 1) are presented in Table 1 for Pr = 0.7 and 7. 
Since the numerical calculations have been carried 
out step-by-step from 5 = 0 to 1, the validity of the 
numerical results can be verified by comparing the 
results of 5 = 1 with the reported data. As can be seen 
from Table 1, the present results of 5 = 1 coincide 
excellently with the data converted from Fujji et al. 

[ 181. In addition, the value of f ‘(5, 0) at 5 = 0 is in 
excellent agreement with that of Wilks et al. [ 131. 

4.1.1. Velocity and temperature profiles of the free 

buoyant jet. The typical dimensionless velocity 

f ‘(5, ~1 = (dkJRe I- 2 (54) 

and dimensionless temperature 0(t,r1) of the free 

buoyant jet are presented in Figs. 1 and 2, respect- 
ively, for Pr = 0.7. The evolution of the profiles from 
the limiting profile of a pure momentum jet (5 = 0) to 
that of a pure buoyant plume (5 = 1) can be seen from 
these figures. In addition, these figures also show that 
the profiles for different intensities of buoyancy are 
very similar. The similarity of the profiles indicates 

0.8 - 5=0.4,0.5,-*~,1 

---- ~=0.3,0.2,0.1.0 

Assisting flow 

Pr = 0.7 

FIG. 1. Typical dimensionless velocity profiles f’(t, q) of a 
free buoyant jet, Pr = 0.7. 
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Table 1. Numerical results of .f’(<, 0) and @(l. 0) of the free buoyant jet 
__~___ 

f’(5,O) O(5.0) 

7 Pr = 0.7 

0 0.45428 [ 131 
0 0.45430 
0.1 0.36801 
0.2 0.29132 
0.3 0.22798 
0.4 0.19440 
0.5 0.21850 
0.6 0.29356 
0.7 0.39564 
0.8 0.51644 
0.9 0.65436 
I 0.80866 
1 0.80872t 

Pr = 7 Pr = 0.7 Pr = 7 

0.45428 [ 131 
0.45430 0.41480 0.95116 
0.36802 0.46048 I .05689 
0.29146 0.51715 1.18862 
0.22952 0.58626 I .35251 
0.20237 0.65277 I .52762 
0.23653 0.66135 I .60529 
0.31801 0.60140 1.51338 
0.42644 0.52783 1.34710 
0.55530 0.46484 1.18855 
0.70245 0.41437 I .05753 
0.86713 0.37321 0.95 150 

0.37328t 
.~ ~_.~~~~ ~~ -~- ~. ~~-- 

‘I’ Data converted from Fujji et al. [18] 

- ~=1.0.9,0.8,---,0.5 

---- ~=0,0.1,0.2,0.3.0.4 

Assisting flow 

PI = 0.7 

9 ; 

FIG. 2. Typical dimensionless temperature profiles o(i, 9) of 
a free buoyant jet, Pr = 0.7. 

- PK = 0.7 

_ -_. 
'\ ---- pr = 7 

u Assisting flow 

FIG. 3. Profiles of the dimensionless velocity U of a free 
buoyant jet, Pr = 0.7. 

that the present dimensionless variables and coor- 

dinates are very appropriate for the analyses of the 
buoyant jets. 

Figures I and 2 have been recast into Figs. 3 and 4 
which are more explicit in a physical sense. In these 

figures, we plot the dimensionless longitudinal vel- 
ocity 

I/ = (u/u,)(Re~~Gr,)’ 4 = ; 3’4< -‘f”(r’,q) (55) 

and the dimensionless temperature 

cp = [(T-T,)/T*](Reg/Gr,)“4 = <“‘*@([,q) (56) 

versus the dimensionless transverse coordinate 

Y = (y/w)(Gr~/Re~)‘~” = cmm”‘“&. (57) 

FIG. 4. Profiles of the dimensionless temperature cp of a free 
buoyant jet, Pr = 0.7. 

3 

I! 

- Pr = 0.7 

---- pr = 7 

Assisting flow 
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The downstream distance x has thus been eliminated 
from the dimensionless variables U, cp, and Y, and is 
contained only in the mixed convection parameter 5. 
Figures 3 and 4 show that the dimensionless velocity 
and temperature profiles develop from the sharp and 
narrow ones of the jet type to the flattened and wide 
ones of the plume type as the buoyancy parameter 5 
increases. 

4.1.2. Variations of the centerline velocity and 
centerline temperature of the free buoyant jet. The 
variations of the dimensionless centerline velocity 
UC = (u,/uo)(Re~/Grw) ‘j4 with respect to the dimen- 
sionless downstream distance 

X = (x/w)(GrJ/ReL’) ‘/4 = [- I514 (58) 

are shown in Fig. 5 for fluids of Pr = 0.7 and 7. 
This figure shows that the centerline velocity initially 
decreases with downstream distance from the slit, then 
reaches a minimum and thereafter increases steadily. 
This figure reveals a deceleration region near the slit 
and an acceleration region at a downstream distance 
far from the slit. At the deceleration region the cen- 
terline velocity of the free buoyant jet is retarded by 
the viscous force and decreases to a minimum. At the 
acceleration region, the buoyancy force increases and 
drives the fluid to flow faster. 

The variations of the centerline temperature cpC with 
the dimensionless longitudinal distance X are pre- 
sented in Fig. 6. This figure shows that the centerline 
temperature decreases monotonically with increasing 
downstream distance. Further inspection of this figure 
reveals that there are two different slopes cor- 
responding to the jet region and the plume region. 
The region of transition from the momentum jet to 
the buoyant plume is around X = 0.5, as indicated in 
Figs. 5 and 6. These figures also indicate that the 
centerline velocity and centerline temperature of 
Pr = 7 are higher than those of Pr = 0.7. 

-0 

:- 
,“- 
Lo- Assisting flow 
-J- 

W- 

UC 
"0 

FIG. 5. The variations of the dimensionless centerline velocity 
UC of a free buoyant jet. Pr = 0.7 and 7. 

“0 

1 
-0- Assisting flow 

FIG. 6. The variations of the dimensionless centerline tem- 
perature cpC of a free buoyant jet, Pr = 0.7 and 7. 

4.1.3. Correlation equations of the centerline tem- 
perature and centerline velocity. For application con- 
venience, we propose a simple but very accurate cor- 
relation equation 

[lP(k O)]“’ = [(I -W(O, 0)l”‘f [5/U, WI”’ (59) 

for the prediction of the centerline temperature of the 
free buoyant jet at any downstream distance. The plus 
and minus signs in front of the last term of equation 
(59) refer to the buoyancy assisting and opposing 
flows, respectively. The values of 0(0, 0) and @(l, 0) 
for the limiting cases of a momentum jet (5 = 0) 
and a buoyant plume (5 = l), respectively, are 
listed in Table 1. The positive constant m will 
be specified to minimize the discrepancy between 
the correlation and the numerical data. For m = 4, 
the discrepancy is less than 0.9% over the entire 
region of buoyancy (0 < 5 < 1) for Pr = 0.7 and 7. 
The maximum discrepancy occurs in the transition 
region (0.4 < 5 < 0.5). 

The centerline velocity can be predicted by the pro- 
posed correlation equation 

[S’(k 011”’ = [f’(O, O)l”(l -02” f [.f’(l, On?‘. 
(60) 

The values of f’(O,O) and f’(l, 0) for the limiting 
cases are presented in Table 1. The maximum error of 
the correlation equation with m = 2.5 is less than 
0.7% for Pr = 0.7 and 1.5% for Pr = 7 over the whole 
range of buoyancy (0 $ [ < 1). 

4.2. Wall buoyant jet 
Numerical results of f’(<, 0) and 0(5,0) for a wall 

buoyant jet over the entire buoyancy assisting flow 
region from a momentum wall jet (5 = 0) to a buoyant 
wall plume (5 = 1) are presented in Table 2 for 
Pr = 0.7 and 7. The results of the buoyancy opposing 
flow are also listed in this table. The validity of the 



1138 w. s. YU et (Ii. 

Table 2. Numerical results of ,f“‘(t. 0) and O(t.0) of the wall buoyant jet 

Y(<, 0) 

i Pr = 0.7 Pr = 7 
_..~~~~ ~~_~~ ~_ ~~~~ ~_~ ~~_~~ 

Assisting flow 
0 0.131353$ 0.1313531_ 
0 0.13134 0.13134 
0.1 0.09579 0.09581 
0.2 0.06810 0.06914 
0.3 0.05303 0.062 I 7 
0.4 0.06582 0.09867 
0.5 0.12022 0.19139 
0.6 0.21404 0.34264 
0.7 0.34509 0.55567 
0.8 0.51790 0.83642 
0.9 0.73887 1.19327 
1 1.01495 1.63932 
I I .01493 [20] 

Opposing flow 
0 0.13134 0.13134 
0.05 0.11263 0.11263 
0.1 0.09575 0.09572 
0.15 0.08050 0.08028 
0.20 0.06642 0.06535 
0.25 0.05247 0.04860 
0.30 0.03633 0.02296 

et. 0) 
_ 

Pr = 0.7 

0.70157 
0.77927 
0.87620 
0.99610 
1.12017 
1.16954 
1.10343 
0.99040 
0.88003 
0.78596 
0.708 13 
0.70815: 

0.70157 2.06556 
0.73835 2.17416 
0.77928 2.29495 
0.82509 2.43024 
0.87687 2.58389 
0.93645 2.76383 
I .00766 2.99264 

t Exact solution converted from ref. [16]. 
f. Data converted from Liburdy and Faeth [20]. 

Pr = I 

2.06556 
2.29488 
2.57958 
2.91774 
3.21977 
3.33478 
3.22464 
2.96772 
2.66634 
2.38529 
2.15625 

numerical results has been verified in Table 2 by com- 
paring with the exact solution of ,f”‘(O,O) converted 
fromref.[16],andwiththedataoff”‘(l,0)andQ(l,0) 

converted from Liburdy and Faeth [20] for the wall 
plume. 

4.2.1. Velocity und temperature pro$es of the wall 

buoyant jet. For a jet propagating along an adiabatic 
plane wall, the typical profiles of the dimensionless 
velocity ,f”(l, q) = (u/u,)Rek’ and the dimen- 

sionless temperature O(<,q) are presented in Figs. 7 
and 8, respectively. Another dimensionless longi- 
tudinal velocity 

U = (u/u,,)(Rr;/Gu,)’ ’ = i -’ ‘< ‘,f”(s”,q) (61) 

over the dimensionless transverse coordinate 

Y = (y/w)(Gr:/Re;)“’ = [m”“& (62) 

is shown in Fig. 9, while the profiles of the dimen- 

sionless temperature 

cp = [(T-T, )/T*](Re~,/Gr,)“’ = [““@(<,q) (63) 

over Y are presented in Fig. 10. The profiles are sharp 

and high in the jet region of small 5, whereas the 
profiles are flatter and low in the plume region of large 
< where the jet fluid is spread wider. 

6 Assisting flow 

f' Pr = 0.7 

4 

FIG. 7. Typical dimensionless velocity.profiles f’(5. q) of a FIG. 8. Typical dimensionless temperature profiles f)(<, q) of 
wall buoyant jet, Pr = 0.7. a wall buoyant jet, Pr = 0.7. 

8 
Assisting flow 
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FIG. 9. Profiles of the dimensionless velocity U of a wall 
buoyant jet, Pr = 0.7. 

42.2. Variations of the swface temperature and 
shear stress. For the wall buoyant jets, the most inter- 
esting physical quantity is the variation of the surface 
temperature. Figure 11 shows the dimensionless tem- 
perature cp5 = [(TS- T,)/T*](Re~/Gr,)” versus the 
dimensionless distance 

or as 

Cf/(Reb2Re”4)3 = (I--5)-‘.f”(5,0). (66) 

v-20 7 X = (.x/w)(Gr$/ReA5)“’ = 4 . (64) 

This figure shows the decay of surface temperature 
along the downstream distance. It also displays the 
jet region (X < O.l), the intermediate region (0.1 < 
X < S), and the plume region (X > 5). 

Another physical quantity of interest is the shear 
stress at the surface, which can be expressed in dimen- 
sionless form as 

A plot of C,/(ReJ2Re”4)3 versus [ is shown in Fig. 
12 for both the buoyancy assisting and opposing 
flows. The values of Cf/(Rey2Re’i4)3 attain nearly a 
constant of 0.13 134 for [ < 0.2. The surface friction 
increases with increasing buoyancy parameter < for 
the case of buoyancy assisting flow but decreases with 
increasing [ for buoyancy opposing flow. An alter- 
native expression of the variation of surface shear 
stress along the downstream distance is presented in 
Fig. 13. In this figure, the dimensionless surface shear 
stress is defined as 

cc = r,/p(v/x)’ = n3f”(5, 0) (65) [z./p(v/w)*](Re~/Gr~) ‘;’ = [4”[-3f”([r 0). (67) 

Pr = 0.7 

Assisting flow 

0 2 4 6 
Y 

FIG. IO. Profiles of the dimensionless temperature cp of a wall 
buoyant jet, Pr = 0.7. 
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- 

FIG. 11. The variations of the dimensionless surface tem- 
perature qS of a wall buoyant jet, Pr = 0.7 and 7. 

r 
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I; 

FIG. 12. The variations of the friction coefficient 
Cr/(Re:‘Re1’4)2 of a wall buoyant jet, Pr = 0.7 and 7. 
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FIG. 13. The variations of the dimensionless surface shear 
’ stress [r,/p(v/,~,)‘](Re~iGr,) “’ of a wall buoyantjet, Pr = 0.7 

and 7. 

4.2.3. Correlation equations qf’ the surface tem- 
perature and the surface shear stress of‘ the wall 
buoyant ,jet. The correlation equation of the surface 
temperature for the wall buoyant jet is the same as 
that of the centerline temperature for the free buoyant 
jet. The values of O(O,O) and O(1,O) for the limiting 
cases of the pure wall jet (5 = 0) and the pure wall 

plume (5 = 1) are presented in Table 2. For the buoy- 
ancy assisting flow over the whole buoyancy region 
(0 d 5 < I), the maximum error of the correlation 
equation with m = 4 is less than 2.1% for Pr = 0.7 
and 5.8% for Pr = 7. For the buoyancy opposing flow 
over the region of 0 < 5 < 0.3, the maximum error is 
less than 0.3% for Pr = 0.7 and 0.7% for Pr = 7. The 

maximum error of the correlation for the buoyancy 
assisting flow of Pr = 7 can be reduced from 5.8 to 
I .2% if m = 4 is replaced by m = 3. 

The surface shear stress can be predicted by the 
proposed correlation equation of ,f”(t, 0) : 

[,f”‘(<. O)]” = [,f”‘(O, O)]“‘( I - Q3”’ * [.f”( 1) O)]“(‘“‘. 
(68) 

The values of f”‘(C), 0) and ,f”( I, 0) for the limiting 
cases of c’ = 0 and 5 = I are listed in Table 2. For 

Pr = 0.7, the maximum error of the correlation equa- 
tion with m = 4 is less than 5.5% over the range of 

0 < 5 < I for the buoyancy assisting flow and 1.6% 
over 0 -C 5 < 0.3 for the buoyancy opposing flow. For 
Pr = 7, the maximum error of the correlation equa- 
tion with m = 3 is less than 7.1% for the buoyancy 
assisting flow. 

5. CONCLUSIONS 

In this paper, we have introduced some dimen- 
sionless variables and parameters of proper scales for 
the analyses of the two-dimensional laminar free 
buoyant jet and the wall buoyant jet. Universal for- 
mulations, valid uniformly over the entire buoyancy 

region from pure momentum jets to pure buoyant 
plumes, are obtained. To solve the transformed non- 
similar equations subject to the integral constraints 
of momentum and heat flux conservations, we have 
developed an effective numerical scheme and obtained 

very accurate solutions. The characteristics of the 
buoyant jets as a combination of the momentum jets 

and the buoyant plumes were clearly shown in 
the figures. Very accurate correlation equations of the 

centerline velocity and the centerline temperature of 
the free buoyant jet have been proposed. The cor- 
relations of the surface shear stress and the surface 
temperature of the wall buoyant jet have also been 
introduced. 

Since the analysis is based on the boundary layer 

approximation, only the buoyancy assisting jet and 
the buoyancy opposing jet with slight negative huoy- 

ancy can be studied by the proposed method. A break- 
down in the numerical integration occurs as the 
negative buoyancy increases to a critical value (e.g. 
4 5 0.31 for the case of the buoyancy opposing wall 

jet). The slight negative buoyancy will not reverse the 
jet flow but only retards it. The jet with reverse flow 

is beyond the scope of this paper. In addition, the 
present conventional method cannot deal with the 
large scale motions at the outer edge of the boundary 
layer. Nevertheless, the present method of analysis 

and the developed numerical scheme as well as the 
forms of the correlations can be applied to many other 
,jels. 
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SOLUTIONS NUMERIQUES RIGOUREUSES ET FORMULES POUR LES JETS 
FLOTTANTS LAMINAIRES BIDIMENSIONNELS 

Rbun&-On propose une mbthode de &solution tr&s efficace et p&&e pour traiter les jets libres et flottants 
parittaux. Lesjets flottants sont considCr&s comme une combinaison dejets de quantitt de mouvementet 
de panaches flottants, et ils sont analysts en introduisant quelques variables sans dimension, dans le 
domaine complet du flottement. Un schema efficace et rigoureux aux diffkrences finies est dtvelopp& pour 
rCsoudre les kquations non similaires. Des formules prbcises sont proposees pour predire la temptrature et 
la vitesse sur la ligne centrale des jets flottants libres, laminaires et bidimensionnels. On prCsente aussi des 

formules pour la temptrature et le frottement en surface pour les jets pariirtaux flottants. 

NUMERISCHE LOSUNG UND KORRELATION FtjR EINEN ZWEIDIMENSIONALEN 
LAMINAREN AUFTRIEBSSTRAHL 

Zusammenfassung-Fiir die Untersuchung freier und wandanliegender Auftriebsstrahlen wird ein sehr 
wirksames und genaues L6sungsverfahren vorgeschlagen. Die Auftriebsstrahlen werden als kombiniertes 
System aus Impulsstrahlen und Auftriebsfahnen behandelt. Bei der Analyse werden einige geeignete 
dimensionslose Kennzahlen fiir den gesamten Auftriebsbereich angewandt. Zur Lijsung der nichtghnlichen 
Gleichungen fiir die Impuls- und Energieerhaltung wird ein wirksames Finite-Differenzen-Verfahren 
entwickelt. Zur Beschreibung von Temperatur und Geschwindigkeit in der Symmetrielinie eines zwei- 
dimensionalen laminaren freien Auftriebsstrahls werden sehr genaue Korrelationsgleichungen vorge- 
schlagen. AuDerdem werden Korrelationsgleichungen fiir die Oberfllchentemperatur und die Schub- 

spannung an der Oberfllche wandanliegender Auftreibsstrahlen vorgelegt. 

TOgHbIE YMCJIEHHME PEIIIEHMX M COOTHOIIIEHH~ a,nA PACgETA ABYMEPHbIX 
JIAMMHAPHbIX CBOEO~HOKOHBEKTMBHbIX CTPYR 

Aimoraum+llpe~oxeH secb~a~~~~~~bI~~~0~~bIii~e~o~HccnenoBaH~nCBO60XHbIXunp~c~eH- 
HbIX CBO60~HOKOHBeK~~BH~X~pyii.~B060~OKOHBeKTHBHaSIpyIpacCMaTpHBaelCKKaK KOM6UHHpO- 
BaHHaSl CHCTeMa, COCTORmaR H3 LUIHaMH'feCKUX H n,IaBy'IISX Crpyii, KOTOpbIe aHa.IIll3ESpyIOTCK nyTeM 
BBeAeHUII HeKOTOpbIX 6e3pa3MepHbrx nepeMeHHblX COOTBeTCTByEOmHX MaCmTa6OB BO BCeM AHana30He 

AefiCTBHI nOLWMHOii CMbI. Pa3pa6OTaHa 3@@eKTUBHaK B TO'iHaR CXeMa KOHe'iHblX pa3HOCTefi &WI 
~meHBIHeaBTOMO~e~bHbrXypaBHeHHiiCCOOTBeT~B~IWMUWHTerp~bHbIMHOrp~HSeHURMUCOXpa- 
Hemill MOMeHTa B TeNIOBOrO nOTOKa. l&WJIOXCeHbl O‘IeHb TO'iHble o6o6maromae COOTHOmeHWl Qna 
paNeTa TeMnepaTypbl A CKOpOCTn Ha UeHTpaJIbHOii JIUHUU AByMepHblX J-IaMUHapHbIX CBO6OL@IbIX Nla- 
ByWX CTpyii. Tartxe n&X?ACTaBJleHbl KOppeJtKrulH MeWly TeMnepaTypOii nOBepXHOCTH U HanpEKeHFin 

TpeH5iKIIJIaByWXnpHCTeHHblXCTpyii. 


