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Abstract—A very effective and accurate solution method is proposed for studying the free and the wall
buoyant jets. The buoyant jets are treated as a combined system of the momentum jets and buoyant plumes,
and are analyzed by introducing some dimensionless variables of proper scales over the entire range of
buoyancy. An effective and rigorous finite difference scheme is developed to solve the nonsimilar equations
subject to the integral constraints of momentum and heat flow conservations. Very accurate correlation
equations are proposed for predicting the centerline temperature and the centerline velocity of the two-
dimensional laminar free buoyant jets. Correlations of the surface temperature and the surface shear stress
of the wall buoyant jets are also presented.

1. INTRODUCTION

Hor rFrLulp discharged from a narrow slot into a
large quiescent fluid reservoir of lower temperature is
termed a plane {or two-dimensional) buoyant jet.
Both the unconfined free jet and the wall jet pro-
pagating tangentially along a flat surface have been
studied [1-16]. The flow and thermal characteristics
of buoyant jets are of great interest in many industrial
systems and some environmental studies, such as
mixing, ocean circulations, and air or water pollution,
etc. In practice, the jet flow is turbulent and most of
the previous investigations deal with turbulent buoy-
ant jets. However, laminar jets have also been studied
extensively [1-16], since turbulent jets can be analyzed
mathematically in an identical way [17] except that an
empirical constant has to be determined exper-
imentally.

It is known [7, 8] that the buoyant jet behaves like
a pure momentum jet at the region near the nozzle, at
which the buoyancy force is negligible when compared
with the inertia force. In the downstream region far
from the nozzle, where the buoyancy force is domi-
nant, the buoyant jet is equivalent to a buoyant plume
arising from a line heat source. The limiting cases of
pure momentum jets and pure buoyant plumes have
been investigated by many researchers [1-5, 18-20].

For the past two decades, the research on laminar
jets has concentrated on the effects of buoyancy {7-
15]. However, most of the previous analyses do not
cover the entire range of buoyancy intensity. Starting
from one of the quite different scaling laws of the two
limiting cases, the previous solutions are valid only
for the region near or far from the slit. Accurate
solutions and correlations are not available for the
intermediate region where the inertia is comparable
with buoyancy.

In this paper, we introduce new buoyancy par-

T To whom correspondence should be addressed.

ameters and transformation variables that are of
proper scaling laws for the jet, plume, and tran-
sition regions. The obtained universal formulations of
buoyant jets can be readily reduced to the self-similar
equations of pure momentum jets and to those of
pure buoyant plumes. We have also developed a very
effective finite difference scheme to solve the set of
nonsimilar equations subjected to the boundary con-
ditions and the additional two integral constraints of
momentum and heat flux conservations. The numeri-
cal method is very useful for studying other com-
plicated systems of jets and plumes.

The proper dimensionless variables, the universal
formulations, and the effective numerical scheme
resulted in very accurate solutions for the buoyant jets
over the entire region of buoyancy. In addition, simple
but very accurate correlation equations of the center-
tine temperature and the centerline velocity of the free
buoyant jet, as well as the surface temperature and
the surface friction of the wall buoyant jet, can be
derived in terms of the values of the pure momentum
jet and the pure buoyant plume.

2. ANALYSIS

2.1. System descriptions and governing equations

We consider laminar, plane buoyant jets of incom-
pressible fluid emerging vertically from a long, narrow
slit of width w and spreading into a quiescent fluid
reservoir of a constant temperature T.. For the free
Jet the flow is unconfined after discharging from the
slit, while for the wall jet the flow develops tangentially
along an adiabatic vertical flat plate. According to the
Boussinesq and boundary-layer approximations, the
governing equations of the plane buoyant jets are
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A, B, C defined in equation (46)

<, specific heat

C, friction coeflicient, 7,/p(v/x)?

f dimensionless stream function

Fooofi sty

g gravitational acceleration

G ¢ 0dn

Gr  local Grashof number, gfB| T*|x*/v?

Gr,  Grashof number based on the width of
the slit, gB| T*|w’/v?

H 5 f0dy

Jo initial momentum of the jet per unit
length of source

Pr Prandtl number, v/a

Q.  heat flow per unit length of source

Re local Reynolds number, uyx/v

Reynolds number based on the width of

the slit, uow/v

T temperature

T*  characteristic temperature, Qy/pc,v

u, v  longitudinal and transverse components
of velocity

Uy mean initial velocity of the jet

U dimensionless longitudinal velocity,

(ufuy) (Rel/Gr,) "' for the free jet, and
(/uo)(Rel/Gr,)*" for the wall jet
w width of the slit

x, ¥y longitudinal and transverse coordinates,
respectively
X. Y dimensionless longitudinal and

transverse coordinates.

NOMENCLATURE

Greek symbols

2 thermal diffusivity

B thermal expansion coefficient

{ buoyancy parameter, equation (17)

n dimensionless transverse coordinate,
{(y/x)4

0 dimensionless temperature,
(T—T )4/ T*

A unified scale parameter, equation (13)

v kinematic viscosity

14 dimensionless longitudinal coordinate,
1+

P density of fluid

T shear stress

@ dimensionless temperature,
(T~-T.,)/T*|(Rel/Gr,)"* for the free
jet, and [(T—T,)/T*}(Re)/Gr,)"" for
the wall jet

v stream function.
Subscripts
c at the centerline of the free jet

i ith iteration

j at transverse position level j
S on the surface of the flat plate
0 initial value of the jet

o0 of the ambient fluid.

Superscripts
§ partial derivative with respect to y
n at longitudinal position level .

oT  oT  &°T
U b0 =g 3)
oxX oy

The axial distance x is measured from a virtual line
source of heat and momentum [10, 13]. The plus sign
in front of the last term of equation (2) represents
the buoyancy assisting flow, i.e. the case of hot fluid
ejected upward or cold fluid downward. The minus
sign denotes the case of buoyancy opposing flow. The
associated boundary conditions are

at y=0: v=0, éT/oy=0 4)
du/éy =0 forafreejet (5a)
u=10 forawalljet (5b)

as y— o u=0 T=T,. (6)

2.2. The integral constraints

In addition to the above boundary conditions, two
integral constraints should be considered to obtain
nontrivial solutions. The first constraint is derived
through the integration of the momentum equation

(2) across the flow field :

d oL . g .
de u‘dy:[ gB(T—T,)dy forafreejet

J-

(72)

EIRIE

= j u [J gB(T— Tm)dy}dy forawalljet. (7b)
0 iy
At the region very close to the slit nozzle (x — 0), the
buoyancy force is negligible and the jets are non-
buoyant. Therefore, the initial conditions of equations
(7a) and (7b) can be obtained, respectively, as

Jo = hn})f pu’ dy = constant forafreejet (8a)

and
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K, = lin})J pu (J pu? dy) dy = constant
x=0 jo

v

forawalljet. (8b)

Another constraint comes from energy conser-
vation. The energy carried by the boundary-layer
flow, across the half plane at any x > 0, is constant
and equal to the energy released from the slit. Hence

2 00/2 forafreejet (9a)
Per |, w(T—T,)dy = Q, forawalljet (9b)

where Q, is the rate of heat flow discharged from the
slit per unit length. By introducing the mean initial
velocity of the jets as

uy = (Jo/pw)'?  forafreejet (10a)

or

Uy = 2K, /p*wH)"? forawalljet  (10b)

the quantity Q, can be expressed in terms of the initial
values u, and T, of the jet:

Q(J = pC,,uOW(TO— Tao) (11)
2.3. Transformation variables

To facilitate the numerical computations, a non-
similar transformation based on some novel trans-
formation variables is accomplished. The proposed
dimensionless transverse coordinate is

n=(y/x)4 (12)
with the unified scale parameter A defined by
4= (Re, Re)'">+Gr'® forafreejet (13a)
or
A= (RelRe)"* +Gr'"* forawalljet (13b)
where
Re = uyx/v and Re, = ugw/v (14)

are the local Reynolds number and the Reynolds num-
ber based on the width of the slit, respectively. The
local Grashof number is defined as

Gr = gB| T*|x*/v* (15)
where
T* = QO/(pcpv) = (TO - Too)Rew

is the characteristic temperature of the jet.
A parameter that describes the relative strength of
inertia and buoyant forces is introduced here as

{ = (Re, Re)'3|Gr'>

(16)

forafreejet  (17a)

or
¢ = (Rel Re)"*/Gr/3

forawalljet. (17b)

In terms of {, a dimensionless longitudinal coordinate
can be defined as

E=(01+07" (18)
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which also plays the role of a buoyancy parameter or
mixed convection parameter. At the region near the
slit nozzle (x — 0), the buoyancy can be neglected and
the system is nearly a pure momentum jet. In this case
Re » Gr, therefore { - o0 and & =0. But at the
downstream distance far from the nozzle, the buoy-
ancy is dominant and the system behaves like a buoy-
ant plume arising from a line thermal source. In this
case,{ —»0and & = 1.

In addition to the dimensionless coordinates, a
dimensionless stream function and a dimensioniess
temperature are respectively introduced as

JE&m =i (19

and

0, m) = [(T—T.)/T*]4A (20
2.4, Transformed equations of a plane free buoyant jet

By using the dimensionless variables and coor-
dinates defined in the above section, the system equa-
tions of a plane free buoyant jet can be transformed
into the following forms:

A, 580 s
ST T e
_4 /af/ ”6f
—wahn(%— %)an
L SHAE 4 (00 of
Pr 0+T(f0) —156(1 5)<f Py -6 E)

(22)

The associated boundary conditions and integral con-
straints are

fE0) =0, f0=0, 0(0=0

f/(é» CX-)) = Oa 0(5, w) = 0

d oo o
(1~5)&U) f’f’dﬂ]+3L S dn

15 *
= 4C“JO fdn  (25)

(23a—)
(24

i |7 an =12 (6)

J f6dn =1)2. Q7
0

For the limiting cases of ¢ = 0 and ¢ = 1, equations
(21)-(27) are readily reducible to the set of self-similar
equations of a momentum free jet and a pure buoyant
line plume, respectively.

2.5. Transformed equations of a wall buoyant jet

For the system of a wall buoyant jet, the presence
of an adiabatic vertical wall causes slight changes in
the transformed governing equations as well as the
boundary conditions and constraints when compared
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with the case of the free buoyant jet. In this case,
equations (1)—(6) and (7b)—(9b) are transformed into

5+7
e T
= z — ’ i{: " a‘f
SR é)(f L af) (%)
o +7<, _ 7 a0 ,of
Pr-'0"+ 2% - (f0) = i)él—-f)(f (:‘C“—B 36)
@)
SE0 =0, fED=0. FED=0 (0)
[ =0, 0G0 =0 (D

(1- )5U Iz (f f’f’dn)dﬂ]
wsf ([ a3

32
lim [ f r U rran) dn] -2 6
J.t f0dy = 1. (34)

By utilizing the boundary conditions, equations (32)
and (33) can be further reduced into the following
forms:

(l~é)[j 7uny? dn]+4j F(f)*dn

- 7‘5—0L fody  (35)

lim [F Y dn] = 1/2.
ol o

Equations (28)-(31) and (34)-(36) are the universal
formulation of a laminar wall buoyant jet. They can
be readily reduced to the set of self-similar equations
of a nonbuoyant wall jet {£ = 0) and a buoyant wall
plume (£ = 1).

(36)

3. NUMERICAL METHOD

To obtain converged nontrivial solutions of the
nonsimilar equations (21) and (22) subject to the
boundary conditions (23) and (24) of zero values,
additional conservation constraints should be sat-
isfied simultaneously. Owing to the integral con-
straints, any standard finite-difference scheme can-
not be applied directly. Therefore, we developed a
numerical algorithm to deal with the integral con-
straints, which is then incorporated with Keller’s
box scheme [21]. To conserve space, we describe only
the treatments of the integral constraints and bound-
ary conditions.

W. S, Yu eral

3.1. The discretization of the integral constraints
For convenience, the two integral constraints (25)
and (27) of the free buoyant jet are rewritten as

15
1-—3} +3F~—4- &G (37
H=1/2 (38)
where
= f [ dn, G= J 0dn
(¢} 4]
and H= J f0dg. (39)
(13
The initial condition of equation (37) is
h% F=1/2 (40)
The net points are defined by
=0, n=n_,+h j=12,....J )
O=0, &="4+k n=12,....N (42)

where the increments 4 and & can be uniform or
nonuniform. Equations (37) and (38) can be dis-
cretized nto the following finite-difference form by
using central difference :

AF"+BG"+(C =0 (43)
H' =1;2 (44)

where
A=1 B=0, C=-1/2 forn=0 45

and

A=({1=& "Ik+3/2 (46a)
B = —15(&" "54/8 (46b)
=3-AF "+ BG" ! {46¢)

for n > 0. In deriving the finite-difference equations
(43) and (44), the following difference approximation
was used for the derivative:

dzfdE = (=" ==""")/k (47)

and the middle point values were estimated by

gy (48)

where z is any function of &.

3.2. Recurrence eguations

Trivial solutions or solutions not satisfying the
integral constraints would be obtained if we solved
the discrete governing equations associated only with
the boundary conditions. To incorporate the addi-
tional two integral constraints with the conventional
numerical scheme, our strategy is to drop the bound-
ary conditions f7(&,0)=0 and 0'(£,0)=0 and
replace them with another two presupposed boundary
conditions

FE0) =5

where s and ¢ are the guessed nonzero constants.

and 0(&,0) =1t (49a,b)
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The equations (23a), (24) and (49a,b) will be used
as boundary conditions to complete the system of
difference equations. The two dropped boundary con-
ditions f"(&,0) = 0and 0'(¢,0) = 0, together with the
two integral equations (43) and (44), are then treated
as constraints. Once the converged solution of the
difference equations is obtained, the refined values of
s and ¢ for the next trial can be estimated by the
recurrence equations

D,D.—D.D,

Sip1 =8+ DD, "HzDz (50a)
D,D,—D D

tiy = 2 (50b)

4 AL
i+ b D,—D,D,

where the subscript i denotes the ith iteration for
adjusting the guessed boundary conditions, and
4

Z ambms

m=1

4
D3= Zb;

m=1

4
D =3 a, D,=

m=1

4 4
D4 = Z A Crns DS = Z bmcm (51)
m=1 m=1
where
a, = 00'(¢",0),/6s, a, =0f"(¢",0),/0s
oF? oG7
ay = 0H!/0s, a, = Aﬁ +B—a-;
b, = 00'(£",0),/61, b, =0f"(¢",0),/0t
by =0H}/ot, b ——AaF? 366—7
s =0H{jot, b, = T + P
¢y =0("0), ¢, =f"(&"0),
cy=H'—1/2, ci=AF'+BG'+C. (52)

The above recurrence formulae are derived via the
minimization of the sum of squares of the dis-
crepancies for the constrained conditions. The deriva-
tives involved in the recurrence formulae can be com-
puted by solving two sets of linear systems called
variational equations which were derived by taking
the derivatives of the difference equations and bound-
ary conditions with respect to s and 7. These equations
retain the tridiagonal block structure of the matrix,
and hence can be solved efficiently by using Keller’s
scheme.

The iterations for adjusting the presupposed
boundary conditions are repeated until the following
criterion is achieved :

/(€017 +[0'(E, 0),)° + [H] = 1/2]

+[AFT+BG'+C* <& (53)

where ¢ is a very small quantity, say, 107% or less.
Whenever this criterion is satisfied, the unique solu-
tion which satisfies both the boundary conditions and
integral constraints is surely obtained at £”. Then,
the computation procedures were shifted to the next
marching step &"*'.

For solving the system equation of a buoyant wall
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Jet, similar procedures have been followed. However,
the dropped boundary conditions for a wall jet should
be f'(£,0) = 0 and 8°(¢,0) = 0, which were replaced
by the presupposed boundary conditions f”(¢, 0) = s
and 6(&,0) = ¢, respectively.

A uniform mesh size of A¢ = 0.01 and Ay = 0.05
has been used, which gave convergent numerical
results that do not change with further grid refine-
ment. The edge of the boundary layer has been deter-
mined to be #, = 18 for a free jet and 25 for a wall
jet.

4, RESULTS AND DISCUSSION

4.1. Free buoyant jet

Numerical results of f7(¢,0) and 8(¢,0) for a free
buoyant jet over the entire buoyancy region from a
pure momentum jet (¢ = 0) to a pure buoyant plume
(¢ = 1) are presented in Table 1 for Pr=0.7 and 7.
Since the numerical calculations have been carried
out step-by-step from & = 0 to 1, the validity of the
numerical results can be verified by comparing the
results of ¢ = | with the reported data. As can be seen
from Table 1, the present results of ¢ = 1 coincide
excellently with the data converted from Fujji et al.
[18]. In addition, the value of f(£,0) at £ =015 in
excellent agreement with that of Wilks et al. [13].

4.1.1. Velocity and temperature profiles of the free
buoyant jet. The typical dimensionless velocity

& = (ufuo)Re A2

and dimensionless temperature 6(%,n) of the free
buoyant jet are presented in Figs. 1 and 2, respect-
ively, for Pr = 0.7. The evolution of the profiles from
the limiting profile of a pure momentum jet (£ = 0) to
that of a pure buoyant plume (¢ = 1) can be seen from
these figures. In addition, these figures also show that
the profiles for different intensities of buoyancy are
very similar. The similarity of the profiles indicates

(54)

—— £=0.4,0.5,-+-,1

-—-- §£=0.3,0.2,0.1,0

£ Assisting flow
0.4
0.21
0 .
[/] 3 6 9
n 12

F1c. 1. Typical dimensionless velocity profiles f'(£,7) of a
free buoyant jet, Pr = 0.7.
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Table 1. Numerical results of f7(&,0) and 6(¢&, 0) of the free buoyant jet

f(,0) 0(Z,0)

¢ Pr=20.7 Pr=17 Pr=0.7 Pr=7
0 0.45428 [13] 0.45428 {13]

0 0.45430 0.45430 0.41480 0.95116
0.1 0.36801 0.36802 0.46048 1.05689
0.2 0.29132 0.29146 0.51715 1.18862
0.3 0.22798 0.22952 0.58626 1.35251
0.4 0.19440 0.20237 0.65277 1.52762
0.5 0.21850 0.23653 0.66135 1.60529
0.6 0.29356 0.31801 0.60140 1.51338
0.7 0.39564 0.42644 0.52783 1.34710
0.8 0.51644 0.55530 0.46484 1.18855
0.9 0.65436 0.70245 0.41437 1.05753
1 0.80866 0.86713 0.37321 0.95150
1 0.80872% 0.37328t

t Data converted from Fujj et al. [18].

— £=1,0.9,0.8,-°°,0.5

-——- £=0,0.1,0.2,0.3,0.4

F1G. 2. Typical dimensionless temperature profiles 0(¢, n) of
a free buoyant jet, Pr = 0.7.

— Pr = 0.7

———— Pr =7

Assisting flow

FiG. 3. Profiles of the dimensionless velocity U of a free
buoyant jet, Pr = 0.7,

that the present dimensionless variables and coor-
dinates are very appropriate for the analyses of the
buoyant jets.

Figures 1 and 2 have been recast into Figs. 3 and 4
which are more explicit in a physical sense. In these
figures, we plot the dimensionless longitudinal vel-
ocity

U= (ufup)(Re|Gr,)"* = {72 (&m) (55)
and the dimensionless temperature
@ = [(T—T,)/T*|(Re/Gr,) " = "*E0(E ) (56)
versus the dimensionless transverse coordinate
Y = (¢/w)(Gry/Red)' = {7 %%¢n. (57)
3
—— Pr = 0.7
——— Pr =7

FiG. 4. Profiles of the dimensionless temperature ¢ of a free
buoyant jet, Pr = 0.7.
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The downstream distance x has thus been eliminated
from the dimensionless variables U, ¢, and Y, and is
contained only in the mixed convection parameter ¢.
Figures 3 and 4 show that the dimensionless velocity
and temperature profiles develop from the sharp and
narrow ones of the jet type to the flattened and wide
ones of the plume type as the buoyancy parameter ¢
increases.

4.1.2. Variations of the centerline velocity and
centerline temperature of the free buoyant jer. The
variations of the dimensionless centerline velocity
U. = (u./uy)(Re2/Gr,)"* with respect to the dimen-
sionless downstream distance

X = (x/w)(Gra/Re,)!1* = (1% (58)

are shown in Fig. 5 for fluids of Pr=0.7 and 7.
This figure shows that the centerline velocity initially
decreases with downstream distance from the slit, then
reaches a minimum and thereafter increases steadily.
This figure reveals a deceleration region near the slit
and an acceleration region at a downstream distance
far from the slit. At the deceleration region the cen-
terline velocity of the free buoyant jet is retarded by
the viscous force and decreases to a minimum. At the
acceleration region, the buoyancy force increases and
drives the fluid to flow faster.

The variations of the centerline temperature ¢, with
the dimensionless longitudinal distance X are pre-
sented in Fig. 6. This figure shows that the centerline
temperature decreases monotonically with increasing
downstream distance. Further inspection of this figure
reveals that there are two different slopes cor-
responding to the jet region and the plume region.
The region of transition from the momentum jet to
the buoyant plume is around X = 0.5, as indicated in
Figs. 5 and 6. These figures also indicate that the
centerline velocity and centerline temperature of
Pr = 7 are higher than those of Pr = 0.7.

Assisting flow

]
]
L]
A 1
"] Jet | Inter- E Plume

|mediate !

~ region | region ! region
- 1) ]
Io 'I :

R
- a e 5
0 0 0 0 oot o

FIG. 5. The variations of the dimensionless centerline velocity
U. of a free buoyant jet, Pr = 0.7 and 7.
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-1 Assisting flow
-E Pr=7
OO_
9 3
TOI
—
3 !
3 ! !
o~ ' i
104 : :
g ¢ |
3 1
= . | !
. ] region ! region ! region
'Od I: }

FiG. 6. The variations of the dimensionless centerline tem-
perature ¢, of a free buoyant jet, Pr = 0.7 and 7.

4.1.3. Correlation equations of the centerline tem-
perature and centerline velocity. For application con-
venience, we propose a simple but very accurate cor-
relation equation

[1/6(£, 001" = [(1—&)/6(0, 0)]" £ [¢/6(1,0)]™ (59

for the prediction of the centerline temperature of the
free buoyant jet at any downstream distance. The plus
and minus signs in front of the last term of equation
(59) refer to the buoyancy assisting and opposing
flows, respectively. The values of 8(0, 0) and 6(1, 0)
for the limiting cases of a momentum jet (¢ = 0)
and a buoyant plume (&= 1), respectively, are
listed in Table 1. The positive constant m will
be specified to minimize the discrepancy between
the correlation and the numerical data. For m = 4,
the discrepancy is less than 0.9% over the entire
region of buoyancy (0 < ¢ < 1) for Pr=0.7 and 7.
The maximum discrepancy occurs in the transition
region (0.4 < ¢ < 0.5).

The centerline velocity can be predicted by the pro-
posed correlation equation

E01 = 1/0.01"1 =) £ [/ (1,0
(60)

The values of f7(0,0) and f'(1,0) for the limiting
cases are presented in Table 1. The maximum error of
the correlation equation with m = 2.5 is less than
0.7% for Pr = 0.7 and 1.5% for Pr = 7 over the whole
range of buoyancy (0 < £ < 1).

4.2. Wall buoyant jet

Numerical results of f7(£,0) and 0(&,0) for a wall
buoyant jet over the entire buoyancy assisting flow
region from a momentum wall jet (¢ = 0) to a buoyant
wall plume (¢ = 1) are presented in Table 2 for
Pr = 0.7 and 7. The results of the buoyancy opposing
flow are also listed in this table. The validity of the
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Table 2. Numerical results of f”(£,0) and (£, 0) of the wall buoyant jet

1E0) 0E.0)
4 Pr=10.7 Pr=17 Pr=107 Pr=
Assisting flow
0 0.131353t 0.131353+
0 0.13134 0.13134 0.70157 2.06556
0.1 0.09579 0.09581 0.77927 2.29488
0.2 0.06810 0.06914 0.87620 2.57958
0.3 0.05303 0.06217 0.99610 2.91774
0.4 0.06582 0.09867 1.12017 3.21977
0.5 0.12022 0.19139 1.16954 3.33478
0.6 0.21404 0.34264 1.10343 3.22464
0.7 0.34509 0.55567 0.99040 2.96772
0.8 0.51790 0.83642 0.88003 2.66634
09 0.73887 1.19327 0.78596 2.38529
1 1.01495 1.63932 0.70813 2.15625
1 1.01493 [20} 0.70815%
Opposing flow
0 0.13134 0.13134 0.70157 2.06556
0.05 0.11263 0.11263 0.73835 2.17416
0.1 0.09575 0.09572 0.77928 2.29495
0.15 0.08050 0.08028 0.82509 2.43024
0.20 0.06642 0.06535 0.87687 2.58389
0.25 0.05247 0.04860 0.93645 2.76383
0.30 0.03633 0.02296 2.99264

1.00766

+ Exact solution converted from ref. [16].

1 Data converted from Liburdy and Faeth [20].

numerical results has been verified in Table 2 by com-
paring with the exact solution of f”(0,0) converted
from ref. [16], and with the data of f"(1,0) and 6(1,0)
converted from Liburdy and Faeth [20] for the wall
plume.

4.2.1. Velocity and temperature profiles of the wall
buoyant jet. For a jet propagating along an adiabatic
plane wall, the typical profiles of the dimensionless
velocity f'(£,1) = (u/ug)Rei~? and the dimen-
sionless temperature 0(&,n) are presented in Figs. 7
and 8, respectively. Another dimensionless longi-
tudinal velocity

U= (ujug)(Reg/Gr,)" "= "%7& “f'(&m) (61)

Assisting flow

15

FiG. 7. Typical dimensionless velocity.profiles f'(£,7n) of a
wall buoyant jet, Pr = 0.7.

over the dimensionless transverse coordinate

Y= (y/w)(Gri/Re) " ={""T¢n (62)

is shown in Fig. 9, while the profiles of the dimen-
sionless temperature

@ =[(T—=T,)/T*|(Rey/Gr,)"" = ['*7E0(¢,m)

over Y are presented in Fig. 10. The profiles are sharp
and high in the jet region of small £, whereas the
profiles are flatter and low in the plume region of large
& where the jet fluid is spread wider.

(63)
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F1G. 8. Typical dimensionless temperature profiles 0(&, n) of
a wall buoyant jet, Pr = 0.7.



Two-dimensional laminar buoyant jets

Pr = 0.7

2. Assisting flow

FiG. 9. Profiles of the dimensionless velocity U of a wall
buoyant jet, Pr = 0.7.

4.2.2. Variations of the surface temperature and
shear stress. For the wall buoyant jets, the most inter-
esting physical quantity is the variation of the surface
temperature. Figure 11 shows the dimensionless tem-
perature ¢, = [(T.— T}/ T*](Re)/Gr,)"" versus the
dimensionless distance

X = (x/wHGri/Re)HV7 = {727, (64)

This figure shows the decay of surface temperature
along the downstream distance. It also displays the
jet region (X < 0.1), the intermediate region (0.1 <
X < 5), and the plume region (X > 5).

Another physical quantity of interest 1s the shear
stress at the surface, which can be expressed in dimen-
sionless form as

Ce=1/p(v/x)* = 2’ f"(£,0) (65)

2
JlE=0.2
| Pr = 0.7
E Assisting flow
0.3
H
@ .4
4 .5
.6
1 0.7 0.8
fs1
T T T T T T
[ 2 4 6 8
Y

F1G. 10. Profiles of the dimensionless temperature ¢ of a wall
buoyant jet, Pr = 0.7.
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or as

Ce/(Rey*Re'™)* = (1= f"(&,0).  (66)
A plot of C¢/(Rey*Re"*)* versus { is shown in Fig.
12 for both the buoyancy assisting and opposing
flows. The values of C;/(Re)/*Re'/*)? attain nearly a
constant of 0.13134 for { < 0.2. The surface friction
increases with increasing buoyancy parameter { for
the case of buoyancy assisting flow but decreases with
increasing { for buoyancy opposing flow. An alter-
native expression of the variation of surface shear
stress along the downstream distance is presented in
Fig. 13. In this figure, the dimensionless surface shear
stress is defined as

[r./p(v/w)*](Red/Gri) /7 = [¥7E73 f7(£,0). (67)
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12. The variations of the friction coefficient
Ci/(Rey?Re'™)? of a wall buoyant jet, Pr = 0.7 and 7.
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4.2.3. Correlation equations of the surface tem-
perature and the surface shear stress of the wall
buoyant jet. The correlation equation of the surface
temperature for the wall buoyant jet is the same as
that of the centerline temperature for the free buoyant
jet. The values of 0(0,0) and 6(1,0) for the limiting
cases of the pure wall jet (£ = 0) and the pure wall
plume (¢ = 1) are presented in Table 2. For the buoy-
ancy assisting flow over the whole buoyancy region
(0 < ¢ < 1), the maximum error of the correlation
equation with m = 4 is less than 2.1% for Pr=10.7
and 5.8% for Pr = 7. For the buoyancy opposing flow
over the region of 0 < ¢ < 0.3, the maximum error is
less than 0.3% for Pr = 0.7 and 0.7% for Pr = 7. The
maximum error of the correlation for the buoyancy
assisting flow of Pr =7 can be reduced from 5.8 to
1.2% if m = 4 is replaced by m = 3.

The surface shear stress can be predicted by the
proposed correlation equation of f"(£,0):

[/ E001" = 1170 0" (1 =) £ £ (1LO)}"E™.
(68)

The values of f"(0,0) and f”(1,0) for the limiting
cases of £ =0 and ¢ =1 are listed in Table 2. For
Pr = 0.7, the maximum error of the correlation equa-
tion with m = 4 is less than 5.5% over the range of
0 < ¢ < 1 for the buoyancy assisting flow and 1.6%
over 0 < ¢ < 0.3 for the buoyancy opposing flow. For
Pr =7, the maximum error of the correlation equa-
tion with m = 3 is less than 7.1% for the buoyancy
assisting flow.

5. CONCLUSIONS

In this paper, we have introduced some dimen-
sionless variables and parameters of proper scales for
the analyses of the two-dimensional laminar free
buoyant jet and the wall buoyant jet. Universal for-
mulations, valid uniformly over the entire buoyancy

W. S. Yu eral

region from pure momentum jets to pure buoyant
plumes, are obtained. To solve the transformed non-
similar equations subject to the integral constraints
of momentum and heat flux conservations, we have
developed an effective numerical scheme and obtained
very accurate solutions. The characteristics of the
buoyant jets as a combination of the momentum jets
and the buoyant plumes were clearly shown in
the figures. Very accurate correlation equations of the
centerline velocity and the centerline temperature of
the free buoyant jet have been proposed. The cor-
relations of the surface shear stress and the surface
temperature of the wall buoyant jet have also been
introduced.

Since the analysis is based on the boundary layer
approximation, only the buoyancy assisting jet and
the buoyancy opposing jet with slight negative buoy-
ancy can be studied by the proposed method. A break-
down in the numerical integration occurs as the
negative buoyancy increases to a critical value (e.g.
& = 0.31 for the case of the buoyancy opposing wall
jet). The slight negative buoyancy will not reverse the
jet flow but only retards it. The jet with reverse flow
is beyond the scope of this paper. In addition, the
present conventional method cannot deal with the
large scale motions at the outer edge of the boundary
layer. Nevertheless, the present method of analysis
and the developed numerical scheme as well as the
forms of the correlations can be applied to many other
jets.
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SOLUTIONS NUMERIQUES RIGOUREUSES ET FORMULES POUR LES JETS
FLOTTANTS LAMINAIRES BIDIMENSIONNELS

Résumé—On propose une méthode de résolution trés efficace et précise pour traiter les jets libres et flottants
pariétaux. Les jets flottants sont considérés comme une combinaison de jets de quantité de mouvement et
de panaches flottants, et ils sont analysés en introduisant quelques variables sans dimension, dans le
domaine complet du flottement. Un schéma efficace et rigoureux aux différences finies est développé pour
résoudre les équations non similaires. Des formules précises sont proposées pour prédire la température et
la vitesse sur la ligne centrale des jets flottants libres, laminaires et bidimensionnels. On présente aussi des
formules pour la température et le frottement en surface pour les jets pariétaux flottants.

NUMERISCHE LOSUNG UND KORRELATION FUR EINEN ZWEIDIMENSIONALEN
LAMINAREN AUFTRIEBSSTRAHL

Zusammenfassung—Fiir die Untersuchung freier und wandanliegender Auftriebsstrahlen wird ein sehr
wirksames und genaues Losungsverfahren vorgeschlagen. Die Auftriebsstrahlen werden als kombiniertes
System aus Impulsstrahlen und Auftriebsfahnen behandelt. Bei der Analyse werden einige geeignete
dimensionslose Kennzahlen fiir den gesamten Auftriebsbereich angewandt. Zur Lsung der nichtihnlichen
Gleichungen fiir die Impuls- und Energieerhaltung wird ein wirksames Finite-Differenzen-Verfahren
entwickelt. Zur Beschreibung von Temperatur und Geschwindigkeit in der Symmetrielinie eines zwei-
dimensionalen laminaren freien Auftriebsstrahls werden sehr genaue Korrelationsgleichungen vorge-
schlagen. AuBerdem werden Korrelationsgleichungen fiir die Oberflichentemperatur und die Schub-
spannung an der Oberfliche wandanliegender Auftreibsstrahlen vorgelegt.

TOYHBIE YHCJIEHHBIE PEHNIEHMA U COOTHOIIEHHWS JJIAA PACYETA JBYMEPHBIX
JAMUHAPHBIX CBOBOJHOKOHBEKTUBHBIX CTPY!

Annoramus—IIpennoxen secbMa hheKTHBHBIH H TOYHBIH METO HCC/IEN0BaHUs CBOGOAHBIX W NPHCTEH-
HBIX CBOOOTHOKOHBEKTHBHEIX CTPYH. CBOGOJHOKOHBEKTHBHAA CTPYA PACCMAaTPHBAeTCs Kak KOMOHHHPO-
BaHHAA CHCTEMA, COCTOAUIAA M3 OMHAMMYECKHX H IUIABYYHX CTPYH, KOTODBIC aHAIM3HPYIOTCS MyTeM
BBENCHHS HEKOTOPBIX Ge3pa3sMepHBIX NepeMEHHBIX COOTBETCTBYIOLIMX MAciuTaboB BO BCeM Juana3oHe
neficTBHs moabeMHOR cwibl. PaspaGorana sddexTHBHAZ M TOYHAS CXeMa KOHEMHBIX Pa3HOCTEH s
pellieHHs! HEABTOMO/E IbHBIX YPABHEHHH C COOTBETCTBYIOIMMH MHTErpaIbHBIMH OTPAHHYEHHAMHM COXpa-
HEHHA MOMEHTa M TeIUIOBOro moToka. IIpeiuioxkeHsl o4eHb TOuHBlE 0606WIAIONINE COOTHOLIEHHA st
pacyeTa TeMNepaTypbl H CKOPOCTH Ha LIEHTPaJIbHOM JTHHUE JBYMEPHBIX JJAMMHAPHBIX CBODOIHBIX Mia-
Byuux cTpyi. Takxke IpeaCTaBieHbl KOPPENAUME MEXIY TEMIEPATYPOil NMOBEPXHOCTH M HANPSKEHHS
TPEHHUs IUIABYYHX TIPUCTEHHBIX CTPYIl.



